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This report proposes a stepwise 
process covering the range of 
considerations to systematically 
consider key choices for study design 
and data analysis for non-
interventional studies with the central 
objective of fostering generation of 
reliable and reproducible evidence. 
These steps include (1) formulating a 
well defined causal question via 
specification of the target trial protocol; 
(2) describing the emulation of each 
component of the target trial protocol 
and identifying fit-for-purpose data; 
(3) assessing expected precision and 
conducting diagnostic evaluations; 
(4) developing a plan for robustness 
assessments including deterministic 
sensitivity analyses, quantitative bias 
analyses, and net bias evaluation; and 
(5) inferential analyses.

Non-interventional studies, also referred to as 
observational studies, are conducted using real world 
data sources typically including healthcare data that 
are generated during provision of routine clinical care 
(including health insurance claims and electronic 
health records). These studies provide an opportunity 
to fill in evidence gaps for questions that have not been 
answered by randomized trials.1 However, generating 
decision grade evidence from healthcare data requires 
a robust causal framework to avoid introducing bias. 
Numerous tools aimed at improving the conduct or 
reporting of these non-interventional studies are 
available. Broad guidance documents discuss the 
methodology for non-interventional studies—such 
as the best practices for pharmacoepidemiological 
safety studies by the Food and Drug Administration 
(FDA)2 and the European Network of Centres for 
Pharmacoepidemiology and Pharmacovigilance 
(EncEPP) guide on methodological standards in 
pharmacoepidemiology.3 Quality assessment tools 
such as ROBINS-I4 and GRACE checklist5 assist with 
the evaluation of bias in published studies. Reporting 
tools such as RECORD-PE6 and STaRT-RWE7 provide 
checklists or structured templates to facilitate 
transparency in protocol reporting and reproducibility. 
Finally, the harmonized protocol template HARPER8 is 
supported by regulators to improve communication of 
key study parameters in non-interventional studies, 
and is deposited with protocol registration websites 
(eg, the Open Science Foundation’s OSF.io and 
European Medicines Agency’s ENcEPP.eu).9  10 While 
useful for their specific purposes, these tools are not 
explicitly intended to guide the design and conduct of 
non-interventional studies that evaluate drug safety 
and effectiveness using healthcare data.

Other frameworks such as LEGEND11 and the causal 
roadmap12 outline some broad general principles for 
evidence generation. However, they provide limited 
practical guidance on critical aspects of the process of 
evidence generation, including determining fitness-for-
purpose of the data source, registering study protocols, 
considering principled adaptations over the course of 
a study, and planning robustness evaluations. To that 
end, we present a stepwise process covering these key 
choices with respect to design and analysis that can 
influence the validity of such studies. We initiate our 
discussion by considering the FDA Sentinel system, a 
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SUMMARY POINTS
Non-interventional studies (also referred to as observational studies) conducted 
using healthcare data that are generated during provision of routine clinical 
care (including health insurance claims and electronic health records) 
provide an opportunity to fill in evidence gaps for questions not answered by 
randomized trials
Despite several assessment and guideline tools available to evaluate the validity 
of such non-interventional studies, none proposes a practical guide for the 
conduct and analysis of these studies
PRINCIPLED (process guide for inferential studies using healthcare data from 
routine clinical practice to evaluate causal effects of drugs) is a stepwise process 
proposed to systematically consider key choices for study design and data 
analysis for non-interventional studies
The process outlined here can inform the conduct of non-interventional studies, 
facilitate transparent communications between various stakeholders, and could 
motivate similar considerations for the clinical research community
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national, postmarketing active surveillance system for 
drug products13 using large volumes of healthcare data 
from insurance claims and electronic health records as 
a representative use case. The five step process outlined 
in this report covers formulating a well defined causal 
question via specification of the target trial protocol; 
describing the emulation of each component of the 
target trial protocol and identifying fit-for-purpose 
data source; assessing expected precision and 
conducting diagnostic evaluations; developing a plan 
for robustness assessments including deterministic 
sensitivity analyses, quantitative bias analyses, and 
net bias evaluation; and inferential analyses.

Overview of the proposed process guide
PRINCIPLED (process guide for inferential studies 
using healthcare data from routine clinical practice to 
evaluate causal effects of drugs) is a five step process to 
help ask and answer a causal question regarding drug 
treatment effects using healthcare data. We explicitly 
differentiate between a study planning phase (steps 
1-4) where no inference is made, and a study analysis 
phase (step 5) where inferential analyses are conducted 
with the intent to draw causal inferences. Figure 1 
shows an overview of the proposed steps. Sections 
below discuss each of the steps in detail. We illustrate 
the operationalization of each step through an example 
of the evaluation of sodium-glucose cotransporter-2 
(SGLT-2) inhibitors, drugs used for type 2 diabetes 
treatment, with respect to the known safety concern 
of genital infections.14 While this process considers 
an iterative general approach to resolve issues as they 
arise during conduct of non-interventional studies, 
specific situations could necessitate deliberate 

deviation from these steps. Even in situations where 
the process cannot be fully implemented, a reasonable 
study could still be conducted, but certain trade-offs 
might need to be made.

Step 1: Formulate a causal question via specification of 
the target trial protocol
Asking the right question in the right manner constitutes 
the first step in any process for causal inference about 
treatment effects from observed data.15  16 A practical 
way to ask a causal question in non-interventional 
studies is to specify a protocol of the target trial—
the pragmatic trial that would answer the causal 
question.17 18 Among the key elements of the target trial 
protocol that need to be specified are eligibility criteria, 
treatment strategies, primary outcome(s) of interest, 
treatment assignment, start and end of the follow-
up, and causal contrast (eg, intention-to-treat or per 
protocol effect). Precise specification of the target trial 
protocol is critical because it has direct implications 
in analysis and interpretation. For instance, specified 
eligibility criteria determine the population to which 
the results would apply. Table 1 summarizes the basic 
target trial protocol for our case example study.

Step 2: Describe the emulation of each component of 
the target trial protocol and identify a fit-for-purpose 
data source
Specifying the key components of the target trial 
protocol in step 1 clarifies a list of the data elements 
necessary to emulate it. Next, confounders that 
are necessary to emulate baseline randomization 
should be identified. Causal diagrams, such as causal 
directed acyclic graphs, are useful to make decisions 
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See table 1 for step 1

See figure 2 for step 2

See figure 3 for step 3

See figure 4 for step 4

Step 1

Formulate well defined causal question via
specification of target trial protocol

Step 3

Assess expected precision and
conduct diagnostic evaluations

Step 5
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deterministic sensitivity analyses, probabilistic sensitivity

analyses, and net bias evaluation
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Reassess research question in step 1
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Consider alternative design choices
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research question in step 1

Move on to step 4

Fig 1 | Overview of the process guide for inferential studies using healthcare data from routine clinical practice
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about confounder selection when sufficient content 
knowledge is available.19  20 Importantly, adjustment 
for colliders and instrumental variables should be 
avoided.21

Once all data elements are outlined, investigators 
need to describe the emulation of each component 
of the target trial protocol by providing a precise 
description of variable definitions, including all codes 
and algorithms used for eligibility criteria, treatment 
strategies (including treatment initiation and 
discontinuation), outcomes, and confounders (step 
2a). Data analyses that would be implemented if the 
data from the target trial were available should also be 
described in detail. Structured protocol templates such 
as STaRT-RWE7 and HARPER8 are available to assist 
with transparent reporting of the study protocol. A 
design diagram is suggested to summarize visually the 
longitudinal design aspects of a study.22

Next, investigators need to identify fit-for-purpose 
data sources that contain all data elements needed for 
successful emulation of the target trial (step 2b). Target 
trial specification is an iterative process that depends 
on the availability of data to support the emulation. 
If certain data elements are not included in the data 
source being considered, investigators can consider 
alternate data sources.

As an example of selection of fit-for-purpose data, 
we consider the Sentinel system, which contains 
structured data from health insurance claims 
representing 844 million person years of observation 
between 2000 and 2021 across a large network of 
data providers,23 and is increasingly being enriched 
with insurance claims and linked data from electronic 
health records.24 Figure 2 outlines an approach 
to assess the fitness of purpose that is compatible 
with FDA draft guidance to industry on real world 
data.25 Two key considerations are data relevance 
and data reliability. For determination of relevance, 
we consider the context of Sentinel where most of 
the data come from insurance claims, and ancillary 
sources (including electronic health records) provide 

opportunities for augmentation. In this case, relevance 
determination depends on a series of questions focused 
on measurement characteristics of four variable types 
central to the research question of interest in insurance 
claims data: eligibility criteria, outcome, treatment, 
and key confounders. If measurement of any of these 
variables is deemed to be insufficient, augmentation 
of insurance claims with alternate sources such as 
linked electronic health records would be needed. We 
describe below the specific nuances when considering 
these four key questions.

•	 Question 1: Can the eligibility criteria be emulated 
with sufficient accuracy?

Certain eligibility criteria specified in the target 
trial protocol (eg, some medical conditions) 
might not be explicitly identifiable in insurance 
claims and a previously validated phenotyping 
algorithm might not be available. In these 
circumstances, linkage to electronic health 
records will be needed for development and 
validation of phenotyping algorithms identifying 
the health conditions of interest using claims 
based proxy information.

For instance, heart failure subtypes of preserved 
and reduced ejection fraction are not directly 
identifiable in insurance claims owing to lack of 
ejection fraction measurements. A probabilistic 
phenotyping algorithm based on Medicare 
claims for identifying ejection fraction subtypes 
for heart failure was developed using Medicare 
claims linked to electronic health records from 
the Mass General Brigham healthcare system. 
It demonstrated overall accuracy of 83% in 
differentiating between preserved and reduced 
ejection fraction subtypes.26 This model facilitated 
deployment of this algorithm in national Medicare 
claims data to study drug treatment outcomes 
for these specific populations of interest.27  28 
In circumstances where a developed algorithm 
demonstrates suboptimal performance, limiting 

Table 1 | Target trial protocol for case example study evaluating the effect of sodium-glucose cotransporter-2 (SGLT-2) inhibitors on genital infections
Element Specification Emulation using real world data sources
Eligibility criteria Patients with type 2 diabetes mellitus; aged ≥65 years; no use of study drug treatments before 

randomization; no history of end stage renal disease, HIV, or genital infections; continuous 
Medicare A, B, D enrolment for six months and recorded glycated hemoglobin (HbA1c) test results 
in electronic health records in six months before treatment initiation

Same as target trial

Treatment strategies Initiation of (1) SGLT-2 inhibitors (canagliflozin, dapagliflozin, empagliflozin); or (2) DPP-4 
inhibitors (alogliptin, linagliptin, saxagliptin, sitagliptin). 
Under both strategies, use of antidiabetic treatment after initiation is left to physician and 
patients’ discretion

Same as target trial

Treatment 
assignment

Randomized, non-blinded Non-blinded and assumed to be randomized within 
levels of measured confounders*

Follow-up start 
(time 0)

At assignment Same as target trial

Follow-up end First of administrative end of follow-up (day 365), loss to follow-up, death, or outcome occurrence Same as target trial
Primary outcome Genital infections Same as target trial
Causal contrast Intention-to-treat effect (effect of being assigned to the treatment) Observational analogue of intention-to-treat effect
SGLT-2=sodium-glucose cotransporter-2; DPP-4=dipeptidyl peptidase-4; HbA1c=glycated hemoglobin.
*Measured confounders include demographics (age, sex, race, socioeconomic status markers), diabetes severity related variables including microvascular and macrovascular complications, 
measures related to diabetes control such as HbA1c, comorbid conditions, cotreatments, markers for healthy behavior, and healthcare use.
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the analysis to individuals with linked data from 
insurance claims and electronic health records 
available and a pre-treatment measurement of the 
eligibility criteria might be needed to prevent bias 
at the expense of transportability.

•	 Question 2: Is the outcome of interest measured 
with sufficient quality?

The quality of outcome measurement depends 
on positive predicted value for binary outcomes, 
proportion missing for continuous outcomes, 
and accurate onset for time-to-event outcomes. 
Typically, serious medical conditions (eg, stroke) 
might be adequately recorded in insurance 
claims29; but other outcomes are not, including 
those that require confirmatory laboratory test 
results (eg, acute pancreatitis30) or contextual 
information from free text notes (eg, suicidal 
ideation31). For such outcomes, data augmentation 
through linkage of insurance claims with electronic 
health records is required.

Outcome-identifying algorithms (including 
those using only claims based information) can 
be developed, improved, and validated based 
on chart reviews using linked electronic health 
records. If an algorithm using only claims based 
information shows acceptable performance, 
such an algorithm can be applied to the larger 
insurance claims data source. In cases where 
claims based algorithms are insufficient but 
electronic health record sources provide sufficient 
augmentation to identify the outcome, researchers 
could consider restricting their population to 
patients with claims-electronic health records 
linked records. Judgments on the quality required 
for an algorithm to be considered sufficient for 
use in inference can be subjective; however, 
implementing a simplified rule on performance 
parameters (eg, ≤85% positive predicted value) 
might not be helpful. Whether to proceed with the 
analysis is a multifaceted decision and considers 
factors such as the urgency of information needed 

Data relevance assessment (step 2b)

Insurance claims data

Data reliability assessment

Q1. Can eligibility criteria be
emulated with sufficient accuracy? Accuracy

Quality assurance checks to
ascertain validity of recorded data

Provenance
Documentation of
origins of recorded

information in source data

Completeness
Evaluation completeness of

various fields including
diagnosis, laboratory test result,

and drug treatment records

Incorporating additional sources

Linkage
to

EHRs

Alternative data source
(eg, source containing inpatient

administration records)

No
eg, heart failure with
specific ejection
fraction subtype

No
eg, pancreatitis

No
eg, blood transfusion
products

No
eg, HbA

1c
 results

Develop and
validate claims

based algorithms

Algorithms not demonstrating
acceptable performance,
consider restricting study

to linked population

Algorithms with acceptable
performance, consider deploying

to larger claims based network

Additional information on
confounders useful for informed

robustness analyses or
calibrating primary results

Yes

Q2. Is outcome of interest
measured with sufficient quality?

Yes

Q3. Is treatment measured
with sufficient quality?

Q4. Are key
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Yes

eg, diabetes

eg, stroke

eg, prescription
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Yes eg, diagnosis of
indications,
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to
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Ability to clearly identify

associations between analytical
datasets and source data

Initial feasibility assessment of number of patients potentially available for study

Fit for purpose

Relevant data source (s) Reliable data source (s)

Fig 2 | Determining fit-for-purpose data sources (step 2b of the process guide for inferential studies using healthcare data from routine clinical 
practice). HbA1c=glycated hemoglobin; EHR=electronic health records. *Quality=accuracy with respect to timing and completeness for treatments; 
positive predicted value, sensitivity, specificity for binary outcomes; proportion missing for continuous outcomes; accurate onset for time to event 
outcomes; and availability of long term follow-up data for latent outcomes
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and the severity of the adverse event. Knowing the 
measurement characteristics through validation 
in linked electronic health records, even when 
they are suboptimal, will enable quantitative 
bias analysis.32 More details on quantitative bias 
analysis are given below in step 4. In analyses 
that go across a network of databases, the 
transportability of measurement algorithms and 
the measurement qualities across databases might 
need to be demonstrated.

•	 Question 3: Is the treatment measured with 
sufficient quality?

Quality of measurement for a particular 
treatment refers to the accuracy of recording in 
insurance claims data with respect to the timing 
and completeness. For many products such as 
outpatient prescription drug treatments, insurance 
claims are generally sufficient to capture treatment 
through outpatient pharmacy dispensing 
records. However, an example treatment that is 
often insufficiently recorded in claims is blood 
transfusion products.33 In such circumstances, 
alternate data sources that have information on 
inpatient administrations are needed to answer 
the research question. If dynamic treatment 
strategies are being compared, the time-varying 
clinical factors used to define the strategies over 
time should also be available.34

•	 Question 4: Are key confounders recorded?

If a strong confounder is not adequately measured 
in insurance claims, data augmentation with 
electronic health records or laboratory test 
results might need to be considered. For example, 
baseline glycated hemoglobin (HbA1c) test results 
for a study comparing two glucose-lowering drug 
treatments with respect to an adverse outcome 
might require augmentation. Added information 
on confounders achieved through augmentation 
might be useful to assess the potential for 
uncontrolled confounding,35 and for performing 
additional analyses such as statistical calibration 
of the study results to incorporate knowledge 
about unmeasured confounders.36

Data sources meet the basic criteria for relevance, 
potentially through various augmentation strategies 
if needed, when they provide explicitly characterized 
eligibility criteria, primary outcomes, treatment, 
and key confounders. Additionally, initial feasibility 
assessment of the number of patients potentially 
available for the study might be needed to ensure 
relevance. For example, such assessments could 
include an initial evaluation of the number of new 
users of study drug treatments of interest in the data 
source(s) being considered.

The second aspect for fitness-for-purpose of a data 
source is data reliability, which includes assessments of 
accuracy, completeness, provenance, and traceability 
of the source data (fig 2).25 Within Sentinel, these 
evaluations are performed upstream when converting 

raw data from contributing sources to the Sentinel 
common data model—which is then used for all 
subsequent analyses.37 Data sources that meet both 
relevance and reliability criteria can be considered fit 
for purpose for the study question of interest.

If emulation of each component of the target trial 
protocol is not feasible with the data source being 
considered, investigators can reassess the question 
in step 1 by specifying a modified target trial protocol 
that requires a different set of data elements while still 
asking a causal question of interest. Investigators are 
encouraged to record all assessments of data relevance 
and data reliability to trace key design decisions 
leading to selection of fit-for-purpose data that can 
support the corresponding trial emulation.

If emulation of each component of the target 
trial protocol is feasible with the data source being 
considered, investigators should consider registration 
of the study protocol at this stage before proceeding 
with assessment of expected precision and diagnostic 
evaluations (step 3). An alternative to protocol 
registration is publication of the target trial protocol 
along with the annotated computer code while 
making the data available to interested investigators 
whenever feasible. Pre-registration of protocols and 
data sharing agreements can serve as deterrent to data 
dredging, which is a common concern with analyses of 
healthcare data.38

For the case example study, demographics (age, 
sex, race, socioeconomic status markers); variables 
related to diabetes severity including microvascular 
and macrovascular complications; measures related to 
diabetes control such as HbA1c, comorbid conditions, 
co-treatments, markers for healthy behavior, and 
healthcare use were considered confounders owing 
to their likely association with treatment choice and 
outcome risk. We describe the emulation of each 
component of the target trial protocol by providing a 
precise description of the operationalization of variable 
definitions, including all codes and algorithms, 
using the HARPER8 template (web appendix 2). For 
statistical analysis, we estimated the hazard ratio 
(averaged over the follow-up period) via a Cox model 
adjusted for baseline confounding with propensity 
score stratification and weighting,39  40 as in previous 
studies with low incidence of treatment initiation and 
rare safety outcomes.41 Other adjustment methods, 
such as parametric g formula or inverse probability 
weighting, might be required when emulating trials 
with sustained treatment strategies and thus with 
time-varying treatments.42 We also specified analyses 
in groups stratified by sex, age, and baseline risk 
factors for infections as subgroup analyses of interest 
to evaluate potential effect measure modification by 
these characteristics.

Appendix figure 1 answers questions 1-4 to 
provide clarity on likely fit-for-purpose data for our 
case example. Briefly, outcome and treatment are 
well captured in Medicare claims; however, linkage 
to electronic health records could be important to 
ascertain clinical factors that are used as eligibility 
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criteria or confounders. In this case example, we used 
US Medicare Fee For Service claims data from parts A, B, 
D that are deterministically linked by health insurance 
claim numbers, date of birth, and sex (linkage success 
rate 99.2%) to electronic health records from the Mass 
General Brigham healthcare system in Boston.

Step 3: Assess expected precision and conduct 
diagnostic evaluations
After clearly specifying all design choices and 
registering a study protocol, the next important design 
component is assembling the study population using 
all eligibility criteria to assess expected precision and 
to conduct diagnostic evaluations. These evaluations 
could allow for principled study adaptations, yet little 
formal guidance exists regarding this activity. We fill 
this gap by outlining a systematic approach in figure 3.

•	 Step 3a: Assess expected precision

For emerging safety signals where effect size is 
likely not known, the decision to proceed with 
analyses should depend on the importance of 
the information gained from a public health 
perspective.43 However, during the planning 
phase, it might be helpful to gauge the expected 
precision based on the selected data source and 
design choices to determine if adjustments are 
needed to achieve desired level of precision.44 

Based on the outcome counts and sizes of two 
treatment groups, researchers can estimate the 
variance of the log risk ratio using well known 
formulas and assumptions about the magnitude 
of the risk ratio.44 We provide an R function to 
estimate expected precision based on sizes of two 
treatment groups and combined outcome counts 
across two groups as supplemental material (web 
appendix 3).

•	 Step 3b: Diagnostic evaluations

Diagnostic evaluations are key components 
of non-interventional studies because they 
can alert researchers to potential violations of 
the core assumptions of causal inference. For 
instance, examining distribution of baseline 
characteristics in treatment groups being 
compared is an important diagnostic to detect 
positivity violations.45 Evaluating average length 
of time during which patients adhere to their 
assigned treatment strategies and examining 
characteristics of patients who deviate from the 
treatment strategies could alert researchers to the 
possibility of informative censoring, which could 
threaten exchangeability. Other analysis specific 
diagnostic criteria might also be helpful. For 
instance, when using analyses based on propensity 
scores, evaluating baseline covariate balance after 

Proceed to step 4

Potential issues
diagnosed that are

not addressable
by refining models

Diagnostics passedDesired precision
not achievable

Go back to step 2, consider design
modifications (eg, relaxing eligibility criteria)

Desired precision
achievable

3b. Diagnostic evaluations
General
    Distribution of baseline characteristics in
    treatment groups being compared; evaluation
    of informative censoring
Analysis specific
    Example 1: For PS based analysis, baseline
      covariate balance as diagnostic for PS model
      misspecification
    Example 2: When using weighting for
      informative censoring or time-varying
      confounding, distribution of weights over
      time as diagnostic for weight model
      misspecification

3a. Assess expected precision
Based on outcome counts in overall study

population without stratifying by treatment

Implement eligibility criteria
Assign eligible individuals to treatment groups

Assemble study population

Fig 3 | Assessing expected precision and conducting diagnostic evaluations (step 3 of the process guide for inferential studies using healthcare data 
from routine clinical practice). PS=propensity score
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conditioning on the propensity score could serve 
as a diagnostic for model misspecification.40 46 47 
If inverse probability weighting is used to adjust 
for informative censoring or time-varying 
confounding, evaluating distribution of weights 
over time could serve as a diagnostic for weight 
model misspecification.48 For analysis specific 
diagnostics, refining modelling choices could lead 
to resolution of issues.

If the assessment indicates lower than desirable 
precision or diagnostic evaluations indicate violations 
of core causal inference assumptions that cannot be 
resolved by refining modelling choices, investigators 
can consider going back to step 2 and changing 
some design choices, such as eligibility criteria or 
choice of the comparator group, before proceeding. 
This suggestion is analogous to an amendment of 
the study protocol that is common in prospective 
randomized trials in response to extraneous factors 
such as recruiting challenges.49 Similar to the guidance 
regarding protocol amendments for prospective 
trials, reasons for changes in the protocol of non-
interventional studies using secondary healthcare 
data need to be clearly documented, as well as any 
changes in the causal contrasts that result from 
protocol changes. To maintain analyst blinding with 
respect to the treatment and outcome association and 
study integrity, researchers should also ensure that 
protocol amendments are not introduced in response 
to inferential analysis (step 5).

For our case example in step 3a, the expected 95% 
confidence interval under an assumed null effect on 
the relative scale (1.0) of SGLT-2 inhibitors on the risk 
of genital infections was 0.35 to 1.65. This result is 
imprecise because only 1498 patients with only 40 
outcomes were eligible for analysis. Because the low 
sample size is partly due to the inclusion criterion of 
HbA1c test results before initiation of drug treatment 
(appendix fig 2), we could go back to step 2 and 
consider relaxing this inclusion criterion, which would 
increase the number of eligible individuals to 9339 
(293 events) with a 95% confidence interval of 0.73 
to 1.27. However, relaxing this criterion makes the 
assumption that not adjusting for HbA1c in the main 
analysis does not introduce major confounding bias. 
Appendix table 1 provides a revised target trial table 
highlighting the one protocol change prompted by 
assessment of expected precision.

For step 3b, we used this cohort of 9339 patients 
meeting eligibility criteria per the amended protocol. We 
estimated the probability of initiating SGLT-2 inhibitors 
versus DPP-4 (dipeptidyl peptidase-4) inhibitors given 
baseline patient characteristics (ie, the propensity 
score) using multivariable logistic regression models, 
created 50 stratums based on the distribution of 
propensity scores in patients receiving SGLT-2 inhibitor 
treatment, and weighted DPP-4 inhibitor initiators 
proportional to the distribution of SGLT-2 inhibitor 
initiators in the propensity score stratum into which 
they fell.39 As diagnostics for propensity score models, 

we evaluated distributional overlap (appendix fig 3), 
weight distribution (appendix fig 4), and covariate 
balance using standardized differences post-weighting 
(appendix tables 2 and 3).40  50 SAS macros used to 
conduct the analysis and generate diagnostic figures 
are publicly available.51 All SAS codes are also posted 
on https://dev.sentinelsystem.org/projects/IC/repos/
ic_ci2_principled/browse.

Step 4: Develop a plan for robustness assessments 
including deterministic sensitivity analyses, 
probabilistic sensitivity analyses, and net bias 
evaluation
Robustness assessments deal with the consistency 
of evidence with respect to alternative investigator 
decisions related to study design, measurement, 
or analysis. As the fourth and final step of study 
planning, we propose prespecification of robustness 
assessments. After assessing precision and diagnostic 
evaluations, investigators probably have additional 
understanding of the potential threats to the study 
and can make informed judgments related to the need 
for specific robustness evaluations. Such prespecified 
assessments are most useful if they have a clear 
rationale regarding the specific types of bias they 
address. Robustness assessments can be broadly 
categorized into three types, which are detailed  
below (fig 4).

•	 Step 4a: Deterministic sensitivity analyses

Deterministic sensitivity analyses, also known 
as deterministic quantitative bias analysis, 
can be viewed as variations of the target trial 
protocol, where investigators focus on specific 
design or analytical assumptions and vary them 
individually to gauge the impact of specific 
assumptions or design choices on study results. 
Deterministic sensitivity analysis could focus on 
highly specific design or measurement choices, 
such as varying the outcome definition to increase 
the specificity and evaluate the possibility of bias 
due to outcome misclassification. They could also 
involve prespecification of alternate statistical 
analysis methods.

•	 Step 4b: Probabilistic sensitivity analyses

Probabilistic sensitivity analyses, also known 
as probabilistic quantitative bias analysis, use 
various probabilistic and simulation approaches 
to evaluate the impact of various hidden biases 
on study results, including exposure/outcome 
misclassification, unmeasured confounders, 
and selection bias.35  52 Monte Carlo simulations 
evaluating potential bias require realistic ranges 
for bias parameters, for instance, sensitivity and 
specificity of an outcome identifying algorithm 
based on existing information such as validation 
studies.53 In those simulations, study results 
are recalculated for each run and then tabulated 
to provide empirical estimates of expected 
variation due to uncertainties in exposure or 
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outcome identification.32 Similar bias modelling 
approaches are available to evaluate the impact 
of unmeasured confounders on study results 
based on the strength of association between the 
exposure and the suspected confounder as well as 
the outcome and the suspected confounder.35

•	 Step 4c: Net bias assessment

We use the term “net bias assessment” to describe 
the approaches that allow investigators to detect 
presence of bias from multiple sources such as 
uncontrolled confounding, selection bias, and 
measurement error. We describe two major types 
of such assessments.

Firstly, where possible, investigators should a 
priori identify and include control outcomes or 
control exposures that are known to have no 
associations (negative controls) or well established 
associations (positive controls) with either the 
exposure or outcome of interest. Ideally, these 
control variables will have confounding structure 
or mechanism of measurement error similar to the 
effect targeted for study.54 55 Inability to replicate 
the known effect sizes in these analyses could alert 
investigators to the presence of bias.

Secondly, when a well conducted randomized trial 
exists for the comparison under investigation with 
a different primary endpoint or conducted within a 
more restrictive population, benchmarking or trial 
calibration might be pursued.56  57 If investigators 
are able to replicate results for the primary outcome 
of such a trial in their data source by using identical 
inclusion and exclusion criteria and other design 
elements, it could increase confidence in results 
under a modified target trial protocol.

We recommend that investigators add expected 
precision assessment and diagnostic evaluations 

along with prespecified robustness assessments as 
amendments to the registered protocol before moving 
on to step 5. If assessment of expected precision and 
diagnostic evaluations, which explicitly do not allow 
any inferential analyses, lead to any meaningful 
adaptations in the design or measurement, all such 
changes should also be documented as amendments 
to the registered protocol before starting the inferential 
analyses.

For our case example, we specified a deterministic 
sensitivity analysis (step 4a) to evaluate the impact of 
outcome misclassification. We defined the outcome 
after excluding non-specific codes of balanitis and 
balanoposthitis in male patients and vaginitis and 
vulvovaginitis in female patients and focusing solely 
on candida of urogenital sites.

We also specified a quantitative bias analysis (step 
4b). To explore the impact of our assumption that 
HbA1c is not an important confounder, we used HbA1c 
data in a subset of patients to inform this analysis.58 
Information regarding the distribution of HbA1c 
in our linked subset and the association between 
the unmeasured confounder (HbA1c) and outcome 
(infections) based on prior epidemiological research59 
were used as inputs to calculate adjusted estimates 
over a range of bias parameters.

Finally, we specified a net bias analysis (step 4c), 
by assessing hospital admission for heart failure as a 
positive control outcome. SGLT-2 inhibitors have an 
established association with a reduced risk of hospital 
admission for heart failure. This association has been 
observed consistently across randomized controlled 
trials including CANVAS, CREDENCE, DAPA-HF, 
DECLARE-TIMI-58, EMPAREG OUTCOME, EMPEROR-
REDUCED, and VERTIS-CV.60 61 If the set of controlled 
covariates is sufficient to control confounding (without 
introducing bias) for both of the outcomes (genital 
infection and hospital admission for heart failure), a 

Robustness evaluations (step 4) 

4a. Deterministic
sensitivity analyses

Varying design assumptions,
variable measurement

methods, or analytical choices

Control analysis
Negative or

positive control
exposure/outcome

For unmeasured
confounders
Bias modelling

approaches

For exposure/
outcome

misclassification
Probabilistic sensitivity

analysis

4b. Probabilistic
sensitivity analyses

4c. Net bias assessment

Trial calibration or
benchmarking when

corresponding
trial exists

Duplicating inclusion/
exclusion criteria and
all design aspects of

trial to evaluate
whether primary

outcome is replicable
in data source

Fig 4 | Robustness evaluations (step 4 of the process guide for inferential studies using healthcare data from routine clinical practice)
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finding of robust adjusted association between the 
exposure and known positive control outcome can 
provide some reassurance in the observed findings for 
the genital infection outcome.

Step 5: Inferential analysis
At the end of step 4, all key design elements, 
measurements, and data analysis plan are prespecified, 
and inferential data analysis can proceed. The central 
idea behind structuring the steps in this sequence with 
a clear demarcation between planning and inference is 
to avoid design or analysis changes prompted by study 
results. At the conclusion of inferential analysis and all 
prespecified robustness evaluations, investigators are 
well positioned to make sound inferences about the 
association under investigation.

For our case example study, results are presented 
in figure 5, which showed a consistently elevated risk 
of genital infections after initiating SGLT-2 inhibitors 
versus DPP-4 inhibitors in patients with diabetes 
across all subgroups and all robustness evaluations. 
Appendix figure 5 summarizes the quantitative bias 
analysis for uncontrolled confounding by HbA1c over a 
range of bias parameters, which indicated that the risk 
of genital infections with SGLT-2 inhibitors remained 
elevated even in extreme scenarios of uncontrolled 
confounding. In net bias analysis, we observed a 
robust reduction in the risk of the positive control 
outcome (hospital admission for heart failure), which 
was expected. Overall, results indicating potentially a 
greater risk of genital infections with SGLT-2 inhibitors 
are in line with prior observations from trials and 
observational studies. In a large meta-analysis of eight 
phase 3 randomized trials, the pooled relative risk 
for genital infections was reported to be 3.75 (95% 
confidence interval 3.00 to 4.67).62 A previous analysis 

of US commercial insurance claims reported about 
a threefold increased risk of genital infections with 
SGLT-2 inhibitors versus DPP-4 inhibitors.63

Conclusion
This report introduces a stepwise process that 
systematically considers key decision nodes for 
evaluating causal effects of treatments using 
healthcare data. The process outlined in this 
framework can facilitate transparent communications 
between various stakeholders and motivate critical 
considerations for the clinical research community.
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Fig 5 | Results from the primary analysis, subgroup analyses, and robustness evaluations for the case example study evaluating the effect of sodium-
glucose cotransporter-2 (SGLT-2) inhibitors on genital infections. The quantitative bias analysis (QBA) presents adjusted results at the values of 
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and odds ratio of 1.3 for receipt of SGLT-2 inhibitor treatment). Appendix figure 5 provides results from this quantitative bias analysis over various 
combinations of bias parameters
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