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Interpreting	diagnostic	accuracy		
studies	for	patient	care
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plot of sensitivity against 1−specificity (or false positive rate). 
Figure 2 shows an ROC plot of test accuracy of a single test 
at different thresholds. ROC plots are also used within stud-
ies to compare different tests, to compare different groups 
of patients, and to investigate variability between different 
test observers (readers). ROC plots are useful in systematic 
reviews to present results from m ultiple studies.

Several concepts need to be considered carefully in the 
interpretation of data from a diagnostic accuracy study:
•   How does accuracy change with different diagnostic 

thresholds?
•   If paired outcomes (such as sensitivity and specificity) 

are compared for different scenarios, they often change 
in opposite directions. For example, sensitivity is often 
higher in one test and specificity higher in the other. 
Which is more important?

•   What are the clinical consequences of a missed (false 
negative) diagnosis or a false positive diagnosis? Can 
these risks be presented together—for example, as a 
relative benefit?

•   What is the best way to include disease prevalence in the 
summary of clinical benefit?

•   Are results presented in terms of what happens to 
individual patients, which are often the easiest for 
clinicians (and their patients) to understand?1

Reporting test accuracy at different thresholds
Presenting results at a single threshold
When a test has only a single threshold or cutpoint value (for 
instance, positive or negative for disease, such as a biopsy), 
results are naturally presented in pairs, usually sensitivity 
and specificity, or PPV and NPV (see fig 1). Although PPV 
(and NPV equivalently) allow easy comprehension of the 
probability that a patient with a positive test result has the 
disease, when tests are compared in the same patients it 
is not straightforward to use these measures because the 
calculation of confidence intervals is complex.2

Tests that yield results on a continuous scale require spec-
ification of a test threshold to define positive and negative 
results. Changing the threshold alters the proportion of false 
positive and false negative diagnoses. Figure 2 shows how 
the sensitivity of CA19-9 for diagnosis of pancreatic cancer 
increases as the threshold value is lowered from 1000 to 15 
U/ml, while specificity decreases.

Presenting results at multiple thresholds
For many diagnostic tests, however, there are multiple 
potential thresholds at which different clinical decisions 
could be made, often reflecting diagnostic uncertainty. 
For example, the mammographic BI-RADS classification 
for breast screening has six categories: 0=additional imag-
ing evaluation required; 1=negative; 2=benign findings; 

A diagnostic test accuracy study provides 
evidence on how well a test correctly 
identifies or rules out disease and informs 
subsequent decisions about treatment 
for clinicians, their patients, and health-
care providers. The authors highlight 
several  different ways in which data from 
 diagnostic test accuracy studies can be 
presented and interpreted, and discuss 
their advantages and disadvantages.

Studies of tests that aim to diagnose clinical conditions that 
are directly applicable to daily practice should present test 
results that are directly interpretable in terms of individual 
patients— for example, the number of true positive and false 
positive diagnoses. We do not examine measures used for 
early experimental (exploratory) studies, in which diagnostic 
thresholds have not been established.

Results obtained from a diagnostic test accuracy study are 
expressed by comparison with a reference standard of the 
“true” disease status for each patient. Thus, once a clinically 
relevant diagnostic threshold has been established, patients’ 
results can be categorised by the test as true positive (TP), 
false positive (FP), true negative (TN), and false negative (FN) 
(fig 1).

Diagnostic accuracy can be presented at a specific thresh-
old by using paired results such as sensitivity and specificity, 
or alternatively positive predictive value (PPV) and negative 
predictive value (NPV) (see fig 1). Other methods summa-
rise accuracy over a range of different test thresholds—for 
example, the area under the receiver operator curve (ROC 
AUC, see fig 1).

Despite the simplicity of the 2×2 structure, the presenta-
tion and interpretation of tests and comparisons between 
them are not straightforward. Graphical presentation can 
be highly informative, in particular an ROC plot, which is a 
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SUMMARY POINTS
Diagnostic test accuracy studies should present data in a way that is comprehensible 
and relevant to clinicians, their patients, and healthcare providers when making clinical 
management decisions
The most relevant and applicable presentation of diagnostic test results allows inclusion of 
four key components: interpretation in terms of patients; clinically relevant values for test 
threshold(s); realistic disease prevalence; and clinically relevant relative gains and losses in 
terms of patients (that is, true positive and false positive diagnoses)
Presenting diagnostic accuracy as paired measures, such as sensitivity and specificity, or 
as net benefit summaries with component paired measures, allows inclusion of these four 
components whereas using the area under the ROC curve as a diagnostic performance 
measure does not
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Reference standard test

Diagnostic accuracy measures 
Diagnostic test results are expressed in comparison with 
reference standard diagnosis of disease

Paired diagnostic measures at specic thresholds (such as 
sensitivity and specicity)
Sensitivity is the proportion of patients (or test results) with 
disease correctly diagnosed using a speci�c threshold to 
de�ne a positive test result

   
Speci�city is the proportion of patients (or test results) without 
disease correctly diagnosed

   

Other paired diagnostic measures include: positive predictive 
value (PPV) and negative predictive value (NPV) or positive 
(LR+) and negative (LR−) likelihood ratios

Single diagnostic measure across multiple test thresholds: 
for example, area under the ROC curve (ROC AUC)

          
The ROC AUC for each test corresponds to the probability that 
of two randomly chosen people, one with and one without 
disease, the diagnostic test will rank the person with disease 
with a higher suspicion of disease than the one without 
disease.  For example, an ROC AUC of 0.7 means that of two 
randomly chosen people, there is a 70% chance (equivalent to 
a 0.7 probability) that the person with disease will be ranked 
with higher suspicion than the person without disease. An 
alternative interpretation of the ROC AUC is the average 
sensitivity given that all values of speci�city are equally 
likely27

Other single diagnostic measures used include the 
H-measure21 (where misclassi�cation costs can be �xed) and 
the diagnostic odds ratio (DOR)28

Sensitivity = TP
(TP + FN)

ROC AUC is the area under the ROC
curve of sensitivity v 1−speci�city

Speci�city = TN
(TN + FP)

Disease positive
True positive (TP)

False negative (FN)

Disease negative
False positive (FP)
True negative (TN)

Test positive
Test negative

3=probably benign finding; 4=suspicious abnormality; and 
5=highly suggestive of malignancy.3

For many diagnostic tests there is no consensus regard-
ing the clinically optimal threshold that separates a posi-
tive from a negative result as it is difficult to agree at which 
threshold it is acceptable to risk missing disease. With meas-
ures such as sensitivity and specificity, diagnostic accuracy 
can be reported for each test threshold relevant to the man-
agement of patients. Even then, it is important to understand 
that not all thresholds are equally important. For the diag-
nosis of breast cancer with the BI-RADS scale, the threshold 
between “highly suggestive of malignancy” and “suspicious 
abnormality” is clearly more clinically important to a patient 
and her doctor than the threshold between “benign” and 
“probably benign.”

Presenting a performance measure combined across 
thresholds
Alternatively, diagnostic accuracy can be summarised by 
combining accuracy across a range of thresholds with a 
measure such as ROC AUC (fig 1).4 This, however, can be 
a disadvantage if thresholds that are clinically relevant 
are combined with those that are clinically nonsensical.5 
Clinically, information is needed on how a test performs 
in patients at a clinically relevant threshold rather than a 
summary of how the test might perform across all possible 
thresholds.

Are false positive and false negative diagnoses equally 
important?
No diagnostic test is perfect and almost all tests will some-
times miss disease or indicate disease in normal patients 
(see FN and FP, respectively, in fig 1). False negative and 
false positive diagnoses, however, are rarely equally impor-
tant. Missing a life threatening disease will probably be 
regarded by a patient (and his or her doctor) as much 
more important than a false positive diagnosis in a healthy 
patient. For example, a study of attitudes and knowledge of 
mammography for screening for breast cancer found that 
63% of women thought that 500 or more women receiving 
false positive results was reasonable for each life saved.6

The relative importance of a false negative versus a false 
positive diagnosis (also called relative misclassification 
cost) varies according to where the test fits in the patient 
pathway and who is making the assessment. For example, 
funders or commissioners of healthcare might have a dif-
ferent perspective from patients or clinicians as additional 
false positive diagnoses will increase costs. The relative 
importance of additional false negative versus additional 
false positive diagnoses is particularly important in deci-
sions about which of two tests is “better”—which is more 
important, an increase in sensitivity or an increase in spe-
cificity? To evaluate which test is better, performance needs 
to incorporate clinical costs.

Presenting diagnostic accuracy for patients
For diagnostic accuracy studies to usefully inform clini-
cal practice, their results should be related to decisions 
regarding management of patients. Presentation in terms 
of individual patients is often best,1 and formats such as 
animations with smiley faces have been successful.7

Fig 1 | Diagnostic accuracy measures
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Fig 2 | ROC plot of test accuracy at different thresholds. Data 
from systematic review of CA19-9.29 Threshold values are 
shown in U/mL. At 15 U/mL, test accuracy is 92% sensitivity 
and 60% specificity (1−specificity=40%)



20	 BMJ	|	25	AUGUST	2012	|	VOLUME	345

RESEARCH METHODS AND REPORTING

Interpretation in terms of patients is straightforward 
and direct for paired measures such as sensitivity and spe-
cificity, PPV and NPV, or positive and negative likelihood 
ratios. Sensitivity and specificity provide test accuracy in 
terms of patients in a population, although interpretation 
for an individual patient with unknown disease status is 
less obvious. PPV and NPV are useful to understand the 
probability that a patient with a given positive or negative 
test result has a diagnosis of disease. Positive and negative 
likelihood ratios are useful to understand the role of a test 
result in changing a clinician’s estimate of the probabil-
ity of disease in a patient. These paired measures can be 
combined into a single measure (for example, “net benefit” 
measure; see below), which is also easily understood, par-
ticularly when it is reported with the component paired 
measures.

By contrast, interpretation of a single numerical value 
of the ROC AUC is problematic because the summary 
across all thresholds is difficult to reconcile with a spe-
cific threshold for the individual patient. Also ROC AUC 
is hard to interpret in practice, as it is the probability that 
randomly selected pairs of patients, one with and one 
without disease, would be ordered correctly for probabil-
ity of disease (see fig 1). However, patients do not walk 
into the clinician’s room in pairs,8 and patients want 
their results and diagnosis, rather than the order of their 
results compared with another patient.

Comparing the performance of two diagnostic tests
Three main approaches can be used to compare the diag-
nostic accuracy of two tests that differ depending on 
whether a specific test threshold is used or performance 
is averaged across multiple thresholds. They also vary in 
whether they can be interpreted in terms of patients and 
whether they can incorporate clinical context, such as rela-
tive weightings of false negative and false positive diag-
noses and also disease prevalence. Ideally, diagnostic tests 
should be compared within the same patients or, if this is 
not practical, on randomised groups from the same popu-
lation of patients. This ensures that differences in observed 
test results are because of the tests rather than differences 
in characteristics of patients or study methods.

Paired measures at specific thresholds
The first method compares two tests according to differ-
ences in paired measures such as sensitivity and specifi-
city. For example, of two biomarker tests for pancreatic 
cancer, CA 19-9 with 83% sensitivity and 81% specificity 
can be compared with CA 242 with a sensitivity of 74% and 
specificity of 91%: CA 19-9 has 9% higher sensitivity, but 
10% lower specificity.9 The clinical context of these differ-
ences in sensitivity and specificity would be enhanced by 
using clinically relevant disease prevalence to report the 
difference in the actual number of patients with true and 
false positive diagnoses. For a given increase in sensitiv-
ity, if the prevalence of disease is twice as high, then the 
number of patients who receive a true positive diagnosis 
is doubled. Nevertheless, paired measures are transparent 
enough for healthcare providers or patients to incorporate 
their own relevant contextual information.

Summary measure at specific thresholds: net benefit 
methods
In the second approach, a single overall measure of diag-
nostic performance can be presented by using net benefit 
or net utility methods, calculated from test performance at 
a specific clinically relevant threshold.10-17 Several of these 
measures are based directly on the difference in sensitiv-
ity and specificity between the two tests being compared 
at one10  13  18 or more than one clinical threshold.16  19 A 
single overall measure of diagnostic performance is often 
preferred for simplicity when guiding healthcare spending 
or regulatory approval decisions. These methods directly 
incorporate the contextual information regarding preva-
lence and relative importance of false negative and false 
positive diagnoses.

The weighted comparison (WC) net benefit measure13 
method weights differences in sensitivity and specificity 
between two tests by the relative clinical costs and disease 
prevalence (see box). With the previous example of CA 19-9 
and CA 242, the net benefit is positive (weighted compari-
son=0.07) if CA 19-9 is used instead of CA 242, at a disease 
prevalence of 33%, and a 10-fold higher relative weight-
ing of true positive diagnoses over false positive diagnoses 
(box). To aid interpretation, the weighted comparison can 
be converted to a net benefit equivalent to 23 more true 
positive test results per 1000 patients, based on actual val-
ues of 30 more patients receiving a true positive result and 
66 more patients receiving a false positive diagnosis.

Net benefit methods to measure diagnostic performance
Net benefit measures can provide an overall impact across changes in paired measures. 
For example, the weighted comparison (WC) measure13 is an index weighting the 
difference in sensitivity and difference in specificity of two tests, taking into account the 
relative clinical cost (misclassification costs) of a false positive compared with a false 
negative diagnosis and disease prevalence. We note that the WC measure is similar to the 
net reclassification index (NRI),14 if the latter is adapted to account for disease prevalence 
and relative misclassification costs.

WC=∆sensitivity+[(1−prevalence/prevalence)×relative cost (FP/TP)×∆specificity]
What do weighted comparison values mean?
• Positive WC values indicate a net benefit
• Zero WC values show no net benefit
• Negative WC values show a net loss
• 95% confidence intervals and thresholds for clinical benefit are used to indicate 

significance of results. To aid interpretation, WC can be converted into an equivalent 
increase in true positive patients per 1000.

Example calculating WC for two biomarker tests of pancreatic cancer
Comparing two tumour marker tests for diagnosis of pancreatic cancer, CA 19-9 with 83% 
sensitivity and 81% specificity to CA 242 with 74% sensitivity and 91% specificity,9 the 
difference in sensitivity (∆sensitivity) is 9% (equivalent to 0.09) and the difference in 
specificity (∆specificity) is −10% (or −0.10). So in a population with estimated disease 
prevalence of 33%, and a 10-fold higher relative weighting for true positive diagnoses 
compared with false positive diagnoses, the WC is obtained as:

WC=0.09−(2×0.1×0.10)=0.07
As WC is positive there is an increased net benefit favouring CA 19-9.
To aid interpretation, WC can be converted into an equivalent increase in true 

positive patients per 1000, if all the benefit was focused into TP patients by calculating 
WC×prevalence×1000.

A WC of 0.07 converts to a benefit equivalent to 23 more true positive patient results per 
1000 patients, based on actual values of 30 more patients receiving a true positive result 
and 66 more patients receiving a FP diagnosis, at prevalence and relative weighting as 
specified.

Other single diagnostic measures include: other net effect measures10-12  15- 17  30 and net 
reclassification index.14
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Drug Administration, for example in imaging and compu-
ter aided detection.23

AUC or partial AUC?
The standard ROC AUC averages across all possible 
thresholds. Not all test thresholds, however, are clinically 
relevant.5 For many tests, thresholds offering high sensi-
tivity (such as greater than 80%) are not clinically useful 
because specificity is too low (see fig 3a and b); patients 
with false positive results would overwhelm diagnostic 
services. One way to deal with this is to calculate a partial 
ROC AUC (pAUC), thus restricting comparisons to sensible 
thresholds.24 For example, by excluding sensitivity above 
80%, the partial ROC AUC is 0.27 for CA 125 and 0.15 for 
CA 19-9, suggesting that CA 125 is the superior test (see 
fig 3c and d). It could also be argued that a sensitivity of 
less than 70% is unlikely to be clinically useful (too little 
disease would be detected). A pAUC therefore restricted 
to the range between 70% and 80% sensitivity produces 
values of 0.12 for CA 125 and 0.11 for CA 19-9, suggesting 
the tests are equally effective (fig 3e and f).

This example illustrates a dilemma in ROC AUC inter-
pretation. Should the AUC be calculated across all test 
thresholds (including those that are clinically illogical5  25) 
or should a pAUC be calculated, restricted to clinically 
sensible thresholds? If a partial AUC approach is taken, as 
illustrated in figure 3, even small changes in the choice of 
threshold can affect which test has the greater AUC and is 
classified as superior.26

Extrapolation beyond available data
The choice between standard AUC or pAUC needs particu-
lar consideration when available data are restricted to a 
small region of the ROC plot space. To calculate a stand-
ard AUC the ROC curve must be extrapolated beyond the 
available data so that the whole AUC encompassing 0% to 
100% sensitivity can be calculated. This is a key issue in 
systematic reviews in which data from included studies are 
often limited to a small region of ROC space.

Moreover, the extrapolated region of the curve domi-
nates the AUC as it includes the right hand side of the plot, 
which dominates the ROC AUC. This region lacks clinical 
importance because it is based on thresholds where over 
half the patients receive false positive results. The poor 
utility of the full AUC has been noted in breast screening, 
where high specificity is important to avoid large numbers 
of false positive results leading to unnecessary biopsies in 
a population with a low prevalence.25

Incorporating relative misclassification costs
ROC AUC does not allow incorporation of the relative 
clinical consequences of false negative and false positive 
diagnoses. It is often believed that ROC AUC uses equally 
balanced misclassification costs for these diagnoses, but 
this applies only at one point on the ROC curve, where the 
gradient equals one. In reality, the misclassification costs for 
false negative and false positive diagnoses vary along the 
ROC curve and are dictated by its shape14 and therefore do 
not relate to any clinically meaningful information. This has 
been described as nonsensical and fundamentally incoher-
ent.27 If ROC AUC is used as a performance measure, then 

Single measure averaged across multiple thresholds
A third approach calculates a single overall measure of 
diagnostic accuracy but averaged across multiple test 
thresholds—for example, ROC AUC20 (fig 1) and the newer 
H-measure.21 We illustrate ROC AUC with two tumour 
markers measured on the same patients9; CA 19-9 seems 
to be the superior test as it has an AUC of 0.86, which is 
greater than 0.70 for CA 125 (fig 3).

Problems with ROC AUC for diagnostic performance
The use and interpretation of ROC AUC as a measure of 
diagnostic performance highlights several advantages6 
and disadvantages.4  22 Somewhat surprisingly, ROC AUC 
remains the recommended measure of effectiveness for 
some evaluations of devices submitted to the US Food and 
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Fig 3 | Use of ROC AUC to compare two tests: CA 19-9 and CA 125. Shaded areas indicate ROC AUC 
for regions of interest. Blood samples from 51 control patients with pancreatitis and 90 patients 
with pancreatic cancer were analysed for CA 125 and CA 19-931
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when we compare two ROC curves with different shapes, 
different balances of misclassification costs of false negative 
and false positive diagnoses underlie each curve.21 This is 
analogous to comparing the height of two people by using 
only the numerical output from two rulers, regardless that 
one ruler measures in inches and the other in centimetres.27

Incorporating disease prevalence
To be useful as a performance measure, ROC AUC needs 
to use realistic disease prevalence. For a given ROC curve, 
the calculated AUC is the same regardless of the underly-
ing prevalence of the study data, given the same disease 
severity. When ROC AUC is used to compare two tests, this 
is sometimes wrongly perceived as evaluation at 50% 
prevalence. As with misclassification costs, unless the ROC 
curve corresponds to a straight line, it is not possible to fix 
a single disease prevalence with ROC AUC, as the gradi-
ent changes along the curve. To our knowledge this issue 
has not been previously highlighted.  This is problematic 
when ROC AUC is used to compare tests because the abso-
lute benefit of the difference in sensitivity and specificity 
is clearly dependent on disease prevalence.

Summary
Diagnostic test accuracy studies need to provide evidence in 
a comprehensible and intuitive format that facilitates choice 
of test for clinicians, their patients, and healthcare providers. 
Results should be reported in the context of clinical man-
agement decisions made at clinically sensible and important 
thresholds, preferably in terms of patients. For comparisons 
of tests, differences in true positive and false positive diag-
noses should be reported, and it is important that any overall 
measures of diagnostic accuracy should incorporate relative 
misclassification costs to account for the fact that false nega-
tive and false positive diagnoses are rarely clinically equiva-
lent. Measures need to be interpreted at a disease prevalence 
that reflects the real clinical situation. Analyses based on net 
benefit measures achieve these aims. In contrast, methods 
based on ROC AUC often incorporate thresholds that are 
clinically nonsensical, do not account for disease prevalence, 
and cannot account for the differing clinical implications of 
false negative and false positive diagnoses. We therefore cau-
tion researchers against solely reporting ROC AUC measures 
when summarising diagnostic performance, and caution 
healthcare providers against using ROC AUC alone to inform 
decisions regarding diagnostic performance. We recommend 
that diagnostic accuracy is presented by using paired meas-
ures with clinical context or using net benefit measures with 
their associated paired measures.
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