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or boundaries of the model.4 If these factors are unclear, or 
different decision makers have conflicting requirements, the 
perspective and scope should be broad enough to allow the 
results to be disaggregated in different ways.5

Decision trees
The simplest form of decision analytical modelling in eco-
nomic evaluation is the decision tree. Alternative options 
are represented by a series of pathways or branches as 
in figure 1, which examines whether it is cost effective to 
screen for breast cancer every two years compared with 
not screening. The first point in the tree, the decision node 
(drawn as a square) represents this decision question. In 
this instance only two options are represented, but addi-
tional options could easily be added. The pathways that 
follow each option represent a series of logically ordered 
alternative events, denoted by branches emanating from 
chance nodes (circular symbols). The alternatives at each 
chance node must be mutually exclusive and their prob-
abilities should sum exactly to one. The end points of each 
pathway are denoted by terminal nodes (triangular sym-
bols) to which values or pay-offs, such as costs, life years, 
or quality adjusted life years (QALYs), are assigned. Once 
the probabilities and pay-offs have been entered, the deci-
sion tree is “averaged out” and “folded back” (or rolled 
back), allowing the expected values of each option to be 
calculated.4 

Decision trees are valued for their simplicity and trans-
parency. However, they are limited by the lack of any 
explicit time variable, making it difficult to deal with time 
dependent elements of an economic evaluation.6 Recur-
sion or looping within the decision tree is also not allowed, 
so that trees representing chronic diseases with recurring 
events can be complex with numerous lengthy pathways.

Markov models
An alternative form of modelling is the Markov model. These 
models permit a more straightforward and flexible sequenc-
ing of outcomes, including recurring outcomes, through time. 
Patients are assumed to reside in one of a finite number of 
health states at any point in time and make transitions 
between those health states over a series of discrete time 
intervals or cycles.3  6 The probability of staying in a state or 
moving to another one in each cycle is determined by a set of 
defined transition probabilities. The definition and number of 
health states and the duration of the cycles will be governed 
by the decision problem: one study of treatment for gastro-

Evidence relating to healthcare decisions 
often comes from more than one study. 
Decision analytical modelling can be used 
as a basis for economic evaluations in 
these situations
Economic evaluations are increasingly conducted along-
side randomised controlled trials, providing researchers 
with individual patient data to estimate cost effectiveness.1 
However, randomised trials do not always provide a suffi-
cient basis for economic evaluations used to inform regu-
latory and reimbursement decisions. For example, a single 
trial might not compare all the available options, provide 
evidence on all relevant inputs, or be conducted over a long 
enough time to capture differences in economic outcomes 
(or even measure those outcomes).2 In addition, reliance 
on a single trial may mean ignoring evidence from other tri-
als, meta-analyses, and observational studies. Under these 
circumstances, decision analytical modelling provides an 
alternative framework for economic evaluation.

Following on from our article on trial based economic 
evaluations,1 we outline issues relating to the design, con-
duct, analysis, and reporting of economic evaluations using 
decision analytical modelling. 

Defining the question
The first stage in the development of any model is to specify 
the question or decision problem. It is important to define all 
relevant options available for evaluation, the recipient popu-
lation, and the geographical location and setting in which 
the options are being delivered.3 The requirements of the 
decision makers should have a crucial role in identifying the 
appropriate perspective of the analysis, the time horizon, the 
relevant outcome measures, and, more broadly, the scope 
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oesophageal reflux disease used one month cycles to capture 
treatment switches and side effects,7 whereas an analysis of 
cervical cancer screening used  six monthly cycles to model 
lifetime outcomes.8 

Figure 2 presents a state transition diagram and matrix 
of transition probabilities for a Markov model of a hypo-
thetical breast cancer intervention. There are three health 
states: well, recurrence of breast cancer, and dead. In this 
example, the probability of moving from the well state at 
time t to the recurrence state at time t+1 is 0.3, while the 
probability of moving from well to dead is 0.1. At each cycle 
the sum of the transition probabilities out of a health state 
(the row probabilities) must equal 1. 

An important limitation of Markov models is the assump-
tion that the transition probabilities depend only on the 
current health state, independent of historical experience 
(the Markovian assumption). This limitation can be over-
come by introducing temporary states that patients can 
only enter for one cycle or by a series of temporary states 
that must be visited in a fixed sequence.4 

The final stage is to assign values to each health state, 
typically costs and health utilities.6  Most commonly, such 
models simulate the transition of a hypothetical cohort of 
individuals through the Markov model over time, allowing 
the analyst to estimate expected costs and outcomes. This 
simply involves, for each cycle, summing costs and out-
comes across health states, weighted by the proportion of 
the cohort expected to be in each state, and then summing 

across cycles.3 If the time horizon of the model is over one 
year, discounting is usually applied to generate the present 
values of expected costs and outcomes.1

Alternative modelling approaches
Although Markov models alone or in combination with deci-
sion trees are the most common models used in economic 
evaluations, other approaches are available.

Patient level simulation (or microsimulation) models the 
progression of individuals rather than hypothetical cohorts. 
The models track the progression of potentially heteroge-
neous individuals with the accumulating history of each 
individual determining transitions, costs, and health out-
comes.3  9 Unlike Markov models, they can simulate the time 
to next event rather than requiring equal length cycles and 
can also simulate multiple events occurring in parallel.9

Discrete event simulations describe the progress of indi-
viduals through healthcare processes or systems, affecting 
their characteristics and outcomes over unrestricted time 
periods.9 Discrete event simulations are not restricted to the 
use of equal time periods or the Markovian assumption and, 
unlike patient level simulation models, also allow individu-
als to interact with each other10—for example, in a transplant 
programme where organs are scarce and transplant deci-
sions and outcomes for any individual affect everyone else 
in the queue. 

Dynamic models allow internal feedback loops and time 
delays that affect the behaviour of the entire health system 
or population being studied. They are particularly valuable 
in studies of infectious diseases, where analysts may need 
to account for the evolving effects of factors such as herd 
immunity.11

Identifying, synthesising, and transforming data inputs
The process of identifying and synthesising evidence to 
populate a decision analytical model should be consistent 
with the general principles of evidence based medicine.3  
These principles are broadly established for clinical evi-
dence. Less clear is the strategy that should be adopted 
to identify and synthesise evidence on other variables, 
such as costs and health utilities, other than it should be 
transparent and appropriate given the objectives of the 
model.12 

If evidence is not available from randomised trials, it has 
to be drawn from other sources, such as epidemiological 
or observational studies, medical records, or, more con-
troversially, expert opinion. And sometimes the evidence 
from randomised trials may not be appropriate for use in 
the model—for example, cost data drawn from a trial might 
reflect protocol driven resource use rather than usual prac-
tice13 or might not be generalisable to the jurisdiction of 
interest.5 These methodological considerations have 
increased interest in multiparameter evidence synthesis 
(box).14  These techniques acknowledge the importance 
of trying to incorporate correlations between variables in 
models.2 However, accurately assessing the correlation 
between different clinical events, or between events and 
costs or health utilities, may be difficult without patient 
level data from a single source. Another complication is 
that evidence may have to be transformed in complex ways 
to meet the requirements of the model.3  4 

Fig 2 | Markov state diagram and transition probability matrix for 
hypothetical breast cancer intervention. The arrows represent 
possible transitions between the three health states (well, 
recurrence, and dead), loops indicate the possibility of remaining 
in a health state in successive cycles, and the dashed line 
indicates the possibility of backwards transition from recurrence 
of breast cancer to the well state after successful treatment. The 
cycle length is set at one year
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Fig 1 | Decision tree for breast cancer screening options4
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or in cost effectiveness that can in principle be explained 
by variations between subgroups of patients, either in 
terms of baseline characteristics such as age, risk level, 
or disease severity or in terms of both baseline charac-
teristics and relative treatment effects. As in the analysis 
of clinical trials, subgroups should be predefined and 
carefully justified in terms of their clinical and economic 
relevance. A model can then be re-run for different sub-
groups of patients. 

Alternatively, heterogeneity can be addressed by making 
model variables functions of other variables—for example, 
transition probabilities between events or health states 
might be transformed into functions of age or disease sever-
ity. As with subgroup analysis in clinical trials, care must 
be taken to avoid generating apparently large differences in 
cost effectiveness that are not based on genuine evidence 
of heterogeneity. 

Model evaluation
Evaluation is an important, and often overlooked, step 
in the development of a decision analytical model. Well 
evaluated models are more likely to be believed by deci-
sion makers. Three steps in model validation of escalat-
ing difficulty are face validation, internal validation, and 
external validation:

Face or descriptive validation entails checking whether 
the assumptions and structure of a model are reliable, 
sensible, and can be explained intuitively. This may also 
require experiments to assess whether setting some varia-
bles at null or extreme values generates predictable effects 
on model outputs.

Quantifying and reporting cost effectiveness
Once data on all variables required by the model have 
been assembled, the model is run for each intervention 
being evaluated in order to estimate its expected costs and 
expected outcomes (or effects). The results are typically com-
pared in terms of incremental cost effectiveness ratios and 
depicted on the cost effectiveness plane (box).1

Handling variability, uncertainty, and heterogeneity
The results of a decision analytical model are subject to 
the influences of variability, uncertainty, and heterogene-
ity, and these must be handled appropriately if decision 
makers are to be confident about the estimates of cost 
effectiveness.3  15

Variability reflects the randomness arising from the 
modelling process itself—that is, the fact that models typi-
cally use random numbers when determining whether an 
event with a given probability of occurring happens or not 
in any given cycle or model run, so that an identical patient 
will experience different outcomes each time they proceed 
through the model. This variability needs to be eliminated 
by running the model repeatedly until a stable estimate of 
the central tendency has been obtained.16 

Parameter uncertainty reflects the uncertainty and 
imprecision surrounding the value of model variables 
such as transition probabilities, costs, and health utilities. 
Probabilistic sensitivity analysis, in which all variables 
are varied simultaneously using probability distributions 
informed by estimates of the sample mean and sampling 
error from the best available evidence, is the preferred way 
of assessing parameter uncertainty.15 Probabilistic sensitiv-
ity analysis also allows the analyst to present cost effective-
ness acceptability curves, which show the probability that 
each intervention is cost effective at an assumed maximum 
willingness to pay for health gains.17 If a model has been 
derived from a single dataset, bootstrapping can be used  
to model uncertainty—that is, repeatedly re-estimating the 
model using random subsamples drawn with replacement 
from the full sample.18

Structural or model uncertainty reflects the uncertainty 
surrounding the structure of the model and the assump-
tions underpinning it—for example, the way a disease 
pathway is modelled. Such model uncertainty is usually 
examined with a sensitivity analysis, re-running the model 
with alternative structural assumptions.6 Alternatively, 
several research groups could model the same decision 
problem in different ways and then compare their results 
in an agreed way. This approach has been used extensively 
in fields such as climate change but less commonly in 
health economics. However, one example is provided by 
the Mount Hood Challenge, which invited eight diabetes 
modelling groups to independently predict clinical trial 
outcomes on the basis of changes in risk factors and then 
compare their predictions.19 How the results from different 
models can be reconciled in the absence of a gold stand-
ard is unclear; however, Bojke and colleagues have rec-
ommended some form of model averaging, whereby each 
model’s results could be weighted by a measure of model 
adequacy.20

Finally, heterogeneity should be clearly differentiated 
from variability because it reflects differences in outcomes 

GLOSSARY OF TERMS

•	Cost effectiveness acceptability curve—Graphical 
depiction of the probability that a health intervention 
is cost effective across a range of willingness to pay 
thresholds held by decision makers for the health 
outcome of interest

•	Cost effectiveness plane—Graphical depiction of 
difference in effectiveness between the new treatment 
and the comparator against the difference in cost

•	Discounting—The practice of reducing future costs and 
health outcomes to present values 

•	Health utilities—Preference based outcomes normally 
represented on a scale where 0 represents death and 1 
represents perfect health

•	Incremental cost effectiveness ratio—A measure of cost 
effectiveness of a health intervention compared with an 
alternative, defined as the difference in costs divided by 
the difference in effects

•	Multiparameter evidence synthesis—A generalisation of 
meta-analysis in which multiple variables are estimated 
jointly

•	Quality adjusted life year (QALY)—Preference-based 
measure of health outcome that combines length of life 
and health related quality of life (utility scores) in a single 
metric

•	Time horizon—The start and end points (in time) 
over which the costs and consequences of a health 
intervention will be measured and valued

•	Value of information analysis—An approach for estimating 
the monetary value associated with collecting additional 
information within economic evaluation
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Internal validation requires thorough internal test-
ing of the model—for example, by getting an independ-
ent researcher or using different software to construct a 
replicate of the model and assess whether the results are 
consistent.21 Internal validation of a model derived from 
a single data source, for example a Markov model being 
used to simulate long term outcomes beyond the end of 
a clinical trial, may involve proving that the model’s pre-
dicted results also fit the observed data used in the estima-
tion.18 In these circumstances some analysts also favour 
splitting the initial data in two and using one set to “train” 
or estimate the model and the other to test or validate the 
model. Some analysts also calibrate the model, adjusting 
variables to ensure that the results accord with aggregate 
and observable outcomes, such as overall survival.22 This 
approach has been criticised as an ad hoc search for values 
that makes it impossible to characterise the uncertainty in 
the model correctly.23

External validation assesses whether the model’s 
predictions match the observed results in a population 
or over a time period that was not used to construct the 
model. This might entail assessing whether the model 
can accurately predict future events. For example, the 
Mount Hood Challenge compared the predictions of the 
diabetes models with each other and the reported trial out-
comes.19 External validation might also be appropriate for 
calibrated models.

Value of additional research
Decision analytical models are increasingly used as a frame-
work for indicating the need for and value of additional 
research. These techniques indicate the probability that 
the decision to adopt an intervention on grounds of cost 
effectiveness is correct. They also allow a quantification of 
the cost of making an incorrect decision, which when com-
bined with the probability of making an incorrect decision 
generates the expected cost of uncertainty. This has become 
synonymous with the expected value of perfect informa-
tion (EVPI)—that is,  the monetary value associated with 
eliminating the possibility of making an incorrect decision 
by eliminating parameter uncertainty in the model.24 A pop-
ulation-wide EVPI can be estimated by multiplying the EVPI 
estimate produced by a decision analytical model by the 
number of decisions expected to be made on the basis of the 
additional information.25 This can then be compared with 
the potential costs of further research to determine whether 
further studies are economically worthwhile.
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